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An R-matrix based approach is presented to calculate complex band structure and scattering states for
nanoscale transport problems. The main advantage of the approach is that the scattering states are available at
all energies at once facilitating efficient transport calculations. The accuracy and the suitability of the method
are demonstrated through numerical calculation of complex band structures and transmission probabilities of
electron scattering in nanostructures.
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I. INTRODUCTION

Scattering states play an important role in electron trans-
port and mobility calculations. Simulation of scanning,
tunneling,1–4 and transmission electron microscopy images5

also requires the knowledge of scattering state solutions of
the Schrodinger equation. Various methods have been devel-
oped to calculate scattering states, including Green’s
function-based approaches,6–8 the transfer matrix,9–12 and the
Lippmann-Schwinger method13–16 to mention the most popu-
lar ones. The calculation of scattering states have become a
powerful tool to describe surface states, interface states, tun-
neling currents,17–19 and most recently, quantum transport in
nanoscale devices.20–33 A common property of these ap-
proaches is that the scattering wave function is calculated for
each desired energy, that is the calculation has to be repeated
for all energy points required to describe the system. These
approaches involve diagonalization or inversion of large ma-
trices which is computationally demanding.

Another family of scattering calculations is based on the
R-matrix theory of Wigner.34,35 The R-matrix approach is
mostly used in nuclear and atomic physics.36–40 In the
R-matrix approach one generates a complete set of basis
functions �R-matrix functions� subject to a predefined bound-
ary condition in a finite region and expands the wave func-
tion of the system in terms of the R-matrix functions. The
expansion coefficients are derived from some known prop-
erty of the scattering function, for example by matching to
the known asymptotic form. The advantage of the R-matrix
approach is that the scattering wave function is known for all
energies at once.

In a typical scattering calculation, the Hamiltonian H is
the sum of an asymptotic Hamiltonian H0, and a scattering
potential K, H=H0+K. Most scattering approaches assume
that the solution for the asymptotic Hamiltonian H0 is avail-
able and proceed to find the scattering solution of H0+K by
exploiting the known asymptotic solution: the nonequilib-
rium Green’s function calculations,20–33 for example, use the
solutions in the leads to construct the self-energy matrices of
the device to calculate the charge density and the transmis-
sion probability. The transfer matrix method9–12 propagates
the asymptotic solution into the scattering region. The
Lippmann-Schwinger approach13–16 uses the asymptotic
Green’s function and asymptotic wave function to calculate
the scattering wave function.

In scattering problems in vacuum, the asymptotic Hamil-
tonian is simply the kinetic energy, or the kinetic energy plus
a Coulomb potential for charged particle scattering, and the
asymptotic wave function is known. In scattering problems
in materials �e.g., quantum transport in nanodevices or elec-
tron scattering on impurities� the asymptotic Hamiltonian H0
is assumed to be the Hamiltonian of the crystalline material.
In this case the asymptotic wave functions �Bloch functions�
are not a priori known and have to be calculated for every
energy. The efficient and accurate calculation of these
asymptotic wave functions is an indispensable element of
scattering calculations.

The Bloch states �k�r� have the property

�k�r� = eikruk�r� �1�

where uk�r� has the full crystal periodicity. In conventional
band-structure calculations, the Bloch states are obtained by
calculating the eigenstates of the Hamiltonian for a given
crystal momentum k. In scattering problems all k vectors
associated with a given energy E are sought. These k vectors
can be real or complex, the latter describing evanescent
waves growing or decaying exponentially. The analytic prop-
erties of the energy spectrum of crystals as function of a
complex variable have been described in Ref. 41. In the crys-
tal, periodicity demands that the crystal momentum is real.
But near a crystal surface or interface, the crystal momentum
can be complex. The wave functions belonging to complex k
vectors are particularly important in studies of tunneling cur-
rents and transport in metal insulator interfaces.

In this paper we present a powerful approach to calculate
the Bloch states and complex band structure using the
R-matrix theory. The main advantage of the approach is that
the computationally demanding complex eigenvalue problem
of Bloch states is transformed into an eigenvalue problem
involving only auxiliary surface wave functions. The dimen-
sionality of the surface eigenvalue problem is only a fraction
of the original full eigenvalue problem and the Bloch states
are available at all energies facilitating fast scattering state
calculations.

Once the Bloch states are known, scattering states can be
calculated using various approaches including the above
mentioned transfer matrix, Green’s function or Lippmann-
Schwinger methods. As an illustration, we will use the
R-matrix approach to calculate the scattering states as well.
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The application of the R-matrix for calculating scattering
states is well established.36–40 The presented approach is that
an essential ingredient, the asymptotic �Bloch� functions are
also determined by the R-matrix approach.

The outline of the paper is as follows. First we briefly
describe the R-matrix theory in Sec. II A. This is followed by
the introduction of the formalism to calculate Bloch states in
one- and three-dimensional systems �Secs. II B–II D�. Calcu-
lation of scattering states in a nanoscale device will be
briefly described in Sec. IIE, Numerical demonstration of the
powerfullness of the presented approach is presented in Sec.
III. The paper is concluded with a summary in Sec. IV.

II. FORMALISM

A. R-matrix theory

One of the most efficient approaches to solving scattering
problems is the R-matrix method.34–40 The basic idea of the
R-matrix theory is to divide the system into asymptotic and
interacting regions. The wave function in the asymptotic re-
gion is assumed to be known and the scattering potential is
restricted to the interacting region �“R-matrix box”�. By as-
suming fixed but arbitrary boundary conditions on the sur-
face of the box one can solve the Schrödinger equation in-
side the box. The box eigenfunctions obtained in this way
form a complete, discrete set of states and can be used to
expand the scattering wave function at any arbitrary energy
inside the box. In order to extract the scattering information
�transmission probability, phase shift, etc.�, the external and
internal parts of the wave function are matched at the surface
of the box.

In this section we briefly describe the R-matrix approach.
For simplicity, we restrict the discussion to one dimension;
the extension to three dimensions is straightforward. Let the
interaction region be the �a ,b� interval and let ��x� denote
the solution of the Schrödinger equation in the whole space

H��x� = E��x�H = −
�2

2m

d2

dx2 + V�x� − � � x � � .

�2�

Note that H is not Hermitian on the �a ,b� interval because

� �1�x�H�2�x� −� �2�x�H�1�x�

= −
�2

2m
��1�x��2��x� − �1��x��2�x��a

b. �3�

We also define a Green’s function belonging to this Hamil-
tonian as

�E − H�G�x,x�� = ��x − x�� . �4�

In the R-matrix theory, first an auxiliary function set �i�x�
satisfying prescribed boundary conditions relating the wave
function and its derivative at the boundary

�i��a� = 	a�i�a� �i��b� = 	b�i�b� , �5�

is generated inside the �a ,b� interval. With these boundary
conditions the Schrödinger equation in �a ,b� becomes a dis-
crete eigenvalue problem

−
�2

2m
�i��x� + V�x��i�x� = 
i�i�x� �6�

and the eigenfunctions form a complete set of states. By
multiplying Eq. �2� by �i�x� from the left and integrating in
the �a ,b� region

−
�2

2m
�

a

b

�i�x����x�dx + �
a

b

�i�x�V�x���x�dx

= E�
a

b

�i�x���x�dx . �7�

Similarly by multiplying Eq. �6� by ��x� from the left and
integrating in the �a ,b� region we get

−
�2

2m
�

a

b

��x��i��x�dx + �
a

b

��x�V�x��i�x�dx

= 
i�
a

b

��x��i�x�dx . �8�

Substracting Eq. �8� from Eq. �7� one obtains

−
�2

2m
�

a

b

��i�x����x� − ��x��i��x��

= �E − 
i��
a

b

��x��i�x�dx . �9�

which can be further simplified by integration by parts of the
left hand side, to have

−
�2

2m
��i�b����b� − �i�a����a� − �i��b���b� + �i��a���a��

= �E − 
i��
a

b

��x��i�x�dx . �10�

By expanding ��x� in terms of the complete set of states
�i�x� in the �a ,b� region

��x� = �
i=1

�

ci�i�x� , �11�

the linear coefficients

ci = �
a

b

��x��i�x�dx , �12�

can be expressed using Eq. �10� and the wave function in the
box is given by

��x� = R�b,x����b� − R�a,x����a� − R��b,x���b�

+ R��a,x���a� �13�

where the “R-matrix” is defined as
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R�x,x�� = −
�2

2m
�
i=1

�
�i�x��i�x��

E − 
i
�14�

and

R��x,x�� = −
�2

2m
�
i=1

�
�i��x��i�x��

E − 
i
. �15�

It is important to remember that the expansion Eq. �11� is
valid on the �a ,b� interval but the expansion

���x� = �
i=1

�

ci�i��x� , �16�

�provided that �i=1
� ci�i��x� is uniformly convengent� is only

valid for the �a ,b� open interval �excluding the a and b end
points� because in general the boundary condition is different
for � and �i.

Once Eq. �6� in the �a ,b� region is solved the R-matrix is
completely known and then through Eq. �13� the wave func-
tion in the �a ,b� region can be calculated. Equation �13�
contains the values of the wave function and the first deriva-
tive of the wave function on the boundary, but these are
assumed to be available. In scattering calculations these are
know from the known asymptotic wave functions. In the
present work, as will be shown in the next section, these
boundary values are derived from the properties of the Bloch
states.

The boundary conditions defined in Eq. �5� are arbitrary
and can be chosen to simplify the equations. In this work we
will assume that the derivatives are zero at the boundary, so
that Eq. �13� simplifies to

��x� = R�a,x����a� − R�b,x����b� . �17�

The simplest way to satisfy the boundary conditions is to
solve Eq. �6� by expanding it using basis functions that sat-
isfy the prescribed boundary conditions.

In a similar manner, multiplying Eq. �4� by �i�x� and Eq.
�6� by G�x ,x�� integrating over x in the �a ,b� interval and
subtracting the two equations

G�x,x�� =
2m

�2 R�x,x�� + �R�x,b��dG�x�,x��
dx�

�
x�=b

− R�x,a��dG�x�,x��
dx�

�
x�=a

	 .

Similar equations can be derived in three dimensions, the
only difference being that the values of the functions at the
boundary will be replaced by the surface integral of the func-
tions on the boundary surface and the derivatives are normal
derivatives at the surface.

Alternative derivations of the R-matrix equations are also
possible. To avoid the problems arising from the nonHermi-
ticity of the kinetic energy operator in a finite region �see Eq.
�3��, a boundary surface Bloch operator42

LB =
�2

2m

��x − a�� d

dx
− 	a	 − ��x − b�� d

dx
− 	b	�

�18�

can be introduced. Adding this operator to the Hamiltonian

the resulting new Hamiltonian H̃=H+LB is Hermitian. This
Hermitian Hamiltonian can be diagonalized using an auxil-
iary basis function set �i and the eigenfunctions �i satisfy
the boundary conditions prescribed in Eq. �5�. One can ex-
pand the wave function ��x� using the eigenfunctions �i and
following the steps described above one obtains

��x� = �
i

�i�x���iLB��
E − Ei

�19�

which is equivalent to Eq. �13�. The advantage of this ver-
sion of the R-matrix formalism is that it can be used with
auxiliary basis functions �i of arbitrary boundary conditions
�e.g., GAUSSIANS or atomic orbitals can be used as auxiliary
basis� and the Bloch operator enforces the desired boundary
conditions. This Bloch operator form of the R-matrix method
has been used to calculate magnetotransport properties of
two-dimensional semiconductor devices in Ref. 43.

In this work we follow the first version and we expand
�i�x� in terms of Lagrange functions.44 The derivatives of the
selected Lagrange function basis functions are zero at the
boundary and the simple equation, Eq. �17�, can be used to
calculate the wave function. The basis functions are de-
scribed briefly in the next section.

B. Basis functions

We will use Lagrange functions44 to expand the wave
function and calculate the R-matrix. The ith basis function is
defined as

�i�r� = �l=1

Nx �m=1

Ny �n=1

Nz ClmnLlmn�r� �20�

where the three-dimensional Llmn functions are tensorial
products of one-dimensional Lagrange functions

Llmn�r� = Ll�x�Lm�y�Ln�z� . �21�

These one-dimensional Langrange functions are defined as

Ln�x� =
1

N
+

2

N
�
k=1

N−1

cos�kxn�cos�kx� �22�

with xn= 2n−1
2N . These functions are defined on the �0,1� inter-

val and their first derivative is zero at the boundaries. Appro-
priate scaling must be used to map the �a ,b� R-matrix region
and the �0,1� interval. If we are interested in calculating scat-
tering states propagating in the x direction, then only Ll�x�
has to satisfy the boundary conditions and the Lagrange
functions in the perpendicular directions can be chosen dif-
ferently. In practice, for simplicity we used the same form of
basis functions in each directions.
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C. Calculation of Bloch states

For a periodic potential V�x�=V�x+L� �where L is the
lattice vector in the x direction�, the eigenfunctions are Bloch
waves satisfying the fundamental property

�k�x + L� = eikL�k�x� �23�

d

dx
�k�x + L� = eikL d

dx
�k�x� . �24�

Using these expressions and the �a ,b�= �0,L� interval as the
R-matrix region, Eq. �17� takes the form

�k�x� = �R�x,b�eikL − R�x,a���k��a� . �25�

Taking x=a and x=b in this equation, using the Bloch theo-
rem and introducing 	=eikL, one obtains

�	2R�b,a� − 	�R�b,b� + R�a,a�� + R�a,b���k��a� = 0

�26�

which, by defining

c =
R�a,a� + R�b,b�

R�a,b�
�27�

is a second order polynomial, 	2−c	+1=0, and the roots are
given by

	 =
c � �c2 − 4

2
. �28�

To test the formalism we use the analytically solvable
Mathieu potential45 and calculate the Bloch waves. The
Mathieu potential is defined as

V�x� = V0
1 + cos�2x

L
	� �29�

�V0=1.5 Hartree and L=5 Bohr are used in the calculation�.
A simple finite difference discretization was employed to
solve the Schrödinger equation �Eq. �6��. The real and com-
plex k vectors obtained by solving Eq. �26� are shown in Fig.
1. The calculated and analytical solutions are in perfect
agreement.

D. Bloch states: Three-dimensional case

Now we are ready to present the formalism for a general
three-dimensional case. We assume that the system is peri-
odic in the y and z directions and we are looking for the
Bloch states propagating in the x direction. We suppress the
wave vectors ky and kz belonging to the y and z directions for
simplicity. The calculations have to be repeated for each
�ky ,kz�.

�k�r� = �
b

R�r,rb��
��k�rb��

�x�
dS� − �

a

R�r,ra��
��k�ra��

�x�
dS�

�30�

where

R�r,r�� = �
i

�i�r��i�r��
E − 
i

. �31�

and

ra = �a,y,z�, rb = �b,y,z� ,

ra� = �a,y�,z��, rb� = �b,y�,z��

and dS�=dy�dz�.
Using the Bloch theorem �as in Eq. �25�� one can rewrite

Eq. �30� as

�k�r� = �
b

�R�r,rb��e
ikL − R�r,ra���

��k�ra��
�x�

dS� �32�

and the following equation can be derived

� �	2R�rb,ra�� − 	�R�rb,rb�� + R�ra,ra��� + R�ra,rb���

�
��k�ra��

�x
dS� = 0. �33�

The next step is to introduce an appropriate complete set
of surface basis functions �k�y ,z�. The simplest choice is a
discretization based on Dirac delta functions

�k�y,z� = ��y − yi���z − zi� �k = i, j� , �34�

or Lagrange functions

�k�y,z� = Li�y�Lj�z� �k = i, j� . �35�

Using these surface functions Eq. �33� can be rewritten in a
matrix form

�	2Rab − 	�Raa + Rbb� + Rab�X = 0 �36�

where

�Rcc��ij = ��iR�rc,rc��� j� �c = a or b� �37�

and
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FIG. 1. Band structure calculated using the Mathieu potential.
The right panel shows the real bands, while the imaginary bands are
shown in the left panel. The dots show the analytically calculated
dispersion values.
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Xi = ��i
��k�ra��

�x
� �38�

where the bracket stands for the surface integrals.
Equation �36� is a quadratic eigenvalue problem. The ei-

genvalues, 	i, give the wave numbers of the Bloch states,
and the eigenvectors Xi give the normal derivative of the
wave function on the surface. Using these values the wave
function of the system can be calculated from Eq. �32�. The
quadratic eigenvalue problem can be rewritten in an equiva-
lent form as

� 0 I

− I C
	� X

	X
	 = 	� X

	X
	 �39�

where

C = Rab
−1�Raa + Rbb� . �40�

To check the accuracy and reliability of the proposed ap-
proach we have also calculated the Bloch states using the
approach described, e.g., in Refs. 32 and 46. In this approach
the Bloch states are calculated by solving the equation

�K0 + K1eikL + K−1e−ikL��k = 0 �41�

where

K0 = H0 − ES0 K−1 = H−1 − ES−1 K1 = H1 − ES1

and H0 and S0 is the Hamiltonian and overlap matrix of a
periodic layer, while H1 �H−1� and S1 �S−1� are the same
quantities calculated between two adjacent periodic layers.
Note that this equation is also a quadratic eigenvalue prob-
lem, but here one has to deal with the full, three-dimensional
representation and the dimensionality of these matrices are
typically much bigger than those in Eq. �36�.

III. SCATTERING IN A MOLECULAR JUNCTION

In this section we briefly describe how a scattering wave
function of a molecular junction can be described using the
present formalism. This section follows the general prin-
ciples of R-matrix approaches36–40 and our main purpose
here is to illustrate the application of the Bloch states calcu-
lated in the previous section for scattering in a nanoscale
device.

We assume that the system is divided into three regions
left L= �−� ,a�, center C= �a ,b�, and right R= �b ,��. The left
and right regions are assumed to be the leads consisting of
periodically repeated cells. In these regions we used the ap-
proach presented in Sec. II C to calculate the Bloch functions
�k

L�r� and �k
R�r�. The wave function of the system in the

leads will be linear combination of left and right moving
Bloch states. Assuming an incoming wave from the left, the
wave function in the lead region at energy E will take the
form

��r� =��k
L�r� + �k�

Rkk��k�
L �r� in L

�k�
Tkk��k�

R �r� in R .
� �42�

In the center region we use the R-matrix approach to cal-
culate the wave function

��r� = �
b

R�r,rb��
���rb��

�x�
dS� − �

a

R�r,ra��
���ra��

�x�
dS� �43�

where the R-matrix is constructed by solving the Schrödinger
equation in the central region subject to Dirichlet boundary
conditions. By matching the wave functions �Eqs. �42� and
�43�� on the boundary of C, a linear equation can be derived
for reflection and transmission coefficients Rkk� and Tkk� and
the wave function is determined for the whole system.

IV. NUMERICAL EXAMPLES

In the first set of examples we calculate the complex band
structure of various systems. The importance of complex
band structure has recently been emphasized for various
nanosystems. In Ref. 47 tunneling of metal electrons through
a ferromagnet-insulator-ferromagnet junction has been calcu-
lated by using the complex band structure of the insulator in
the gap region. The conductance of molecular systems17 and
electron transport through double gate MOSFETs �Ref. 48�
have also been studied using complex band structure calcu-
lations. Accurate tunneling currents derived from complex
bands of metal-oxide-semiconductor structures have been re-
ported in Ref. 19. The complex band structure also plays an
important role in quantum transport calculations where the
propagating and evanescent states of the leads have to be

-3 -2 -1 0 1 2 3
k L

-15

-10

-5

0

5

10

15

E
ne

rg
y

(e
V

)

FIG. 2. Band structure of a polyethylene chain. The right panel
shows the real bands, while the imaginary bands are shown in the
left panel. The dots show the band structure calculated by solving
Eq. �41�.
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FIG. 3. Band structure of a �5,5� carbon nanotube. The right
panel shows the real bands, while the imaginary bands are shown in
the left panel. The dots show the band structure calculated by solv-
ing Eq. �41�.
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known in order to calculate the transmission probability
through the nanodevice.18

Our first example is the calculation of the complex band
structure of a polyethylene chain. This system has been stud-
ied by several groups.17,49 We have adopted the same atomic
positions as given in.49 We have used Lagrange basis
functions44 to solve the Kohn-Sham equation in the R-matrix
box. The calculated real and imaginary bands are shown in
Fig. 2. The band structure calculated by the present approach
�Eq. �36�� and by solving Eq. �41� is in perfect agreement.
The results also agree very well with the calculations pre-
sented in Refs. 17 and 49.

Next we present two typical examples, a �5,5� carbon
nanotube and bulk Al. These systems are frequently used in
quantum transport calculations either as lead or device.25,26

Figures 3 and 4 show the calculated real and imaginary
bands of a �5,5� carbon nanotube and bulk aluminum, respec-
tively. Again, in both cases the agreement between the
present approach and the conventional band structure calcu-
lation is perfect �Figs. 3 and 4�. The complex band structure
of the �5,5� carbon nanotube was calculated in Ref. 50. The
major features of the band structure obtained in by our ap-
proach and by the tight binding method are in good agree-
ment. Note that in the present work we solve the self-
consistent Kohn-Sham equations to calculate the band
structure while in Ref. 50 a parametrized tight binding
Hamiltonian has been used.

In these examples, the our approach is almost three order
of magnitude faster than the conventional approach �see
Table I� and this presents a substantial improvement. This
speed up is very advantageous in transport calculation where
the calculation of the scattering wave functions in the lead
has to be repeated for all energies and represent a bottleneck
for the calculations.

Next we calculate the scattering wave function of a nano-
scale system, a gold chain with a single CO molecule ad-

sorbed on it. This system is studied as a benchmark system in
Ref. 33. We have used the same geometry as in that paper
and calculated the scattering wave function for different en-
ergies. The transmission coefficient as a function of energy is
compared to the results of the benchmark study in Fig. 5.
The agreement is very good, especially considering the fact
that different basis functions have been used in the calcula-
tions. In Ref. 33 linear combination of atomic orbitals have
been employed to represent the Hamiltonian matrix. The
convergence of the scattering wave function �and, e.g., the
transmission probability� on atomic centered basis function
representation is slow as shown in Ref. 33. The Lagrange
functions used in this work are not centered at the atoms and
give a much better representation of the scattering wave
function. Increasing the size of the Lagrange basis does not
change the results, the transmission probability is well con-
verged. Therefore the slight difference between the two cal-
culations is most likely due to different representation of the
scattering wave function in the two approaches.

In the last example we demonstrate the applicability of
the present approach to transport problems by calculating the
conductance of a carbon chain coupled to metal electrodes.
The carbon chain contains seven atoms with C-C distance
1.3225 Å. The lattice constant of the Al lead is 4.05 Å. The
calculated transmission spectrum is shown in Fig. 6. In this
case we do not have a benchmark calculation to compare
with, but the general features of the transmission spectrum
are in good agreement with similar calculations.25

TABLE I. Computational time �in seconds� needed to calculate
the scattering wave function in one energy point for a polyethylene
�PE� chain, a carbon nanotube �CN�, and bulk Al.

PE CN Al

Present approach solving Eq. �41� 9.8 43 91

Band-structure approach solving Eq. �39� 0.02 0.06 0.013
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FIG. 4. Band structure of aluminum. The right panel shows the
real bands, while the imaginary bands are shown in the left panel.
The dots show the band structure calculated by solving Eq. �41�.
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FIG. 5. �Color online� Transmission probability of a gold chain
decorated by CO. The solid line is the result of the present approach
while the dashed line is the benchmark result of Ref. 33.
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FIG. 6. Transmission spectrum of a seven atom carbon chain
between Al�100� electrodes.
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V. SUMMARY

We have presented an R-matrix approach to calculate the
complex band structure and scattering states for nanoscale
transport problems. The main advantage of the approach is
that the scattering states at all energies are available at once
facilitating efficient transport calculations.

To solve Eq. �41� on a Lagrange basis one uses Nx�Ny
�Nz basis functions, where Nx, Ny, and Nz are the number of
grid points in each direction. The calculation for one energy
point is then scales like �2NxNyNz�3. To calculate the Bloch
states with the present approach using the same basis func-
tions, one first has to solve Eq. �6� once and then solve Eq.
�36� for each desired energy. The solution of Eq. �36� scales
as �2NyNz�3. Thus the present approach is roughly Nx

3 �Nx

�10–20� faster than the conventional approach. Using dif-
ferent bases sets would change this ratio but it is fair to say
that the problem of calculating the Bloch states is reduced
from three-dimensional to two-dimensional complexity.

The accuracy and the suitability of the method is illus-
trated through the numerical calculation of complex band
structures and transmission probabilities of electron scatter-
ing. The method can be used in various calculations where
the scattering wave function is required, e.g., mobility and
transport calculations or simulations of electron microscopic
images.
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